

PÉRIODE D'ACCRÉDITATION: 2022 / 2026

UNIVERSITÉ PAUL SABATIER

SYLLABUS MASTER

Mention Chimie

Master 2 EM Theoritical Chemistry and Computational Modeling

http://www.fsi.univ-tlse3.fr/https://www.univ-tlse3.fr/master-mention-chimie

2023 / 2024

29 MARS 2024

SUMMARY OF THE CONTENT

PRESENTATION	3
PRESENTATION OF DISCIPLINE AND SPECIALTY	3
Discipline Chimie	3
Speciality	3
PRESENTATION OF THE YEAR OF Master 2 EM Theoritical Chemistry and	
Computational Modeling	3
List of recommended courses :	3
CONTACTS SECTION	4
CONTACT INFORMATION CONCERNING THE SPECIALTY	4
CONTACT INFORMATION CONCERNING THE DISCIPLINE	4
CONTACT INFORMATION FOR THE DEPARTMENT : FSI.Chimie	4
Table summarizing the modules that make up the training program .	5
LIST OF THE MODULES	7
GLOSSARY	23
GENERAL TERMS	23
TERMS ASSOCIATED WITH DEGREES	23
TERMS ASSOCIATED WITH TEACHING	23

PRESENTATION

PRESENTATION OF DISCIPLINE AND SPECIALTY

DISCIPLINE CHIMIE

The master in chemistry offers four specialties: green chemistry, analytical chemistry, chemistry for health, theoretical chemistry and also offers training towards careers in teaching.

The objective is to train students into chemists executives for academic positions or positions in companies covering various business sectors such as the pharmaceutical, cosmetics, chemicals and food industry, materials and instrumentation.

The training also helps develop important transversal skills for employability such as: autonomy, communication, project management, ...

The master in chemistry proposes a progressive orientation in the chosen specialty.

The first year includes a significant share of core courses and specific courses in the chosen specialty.

The second year is rather strongly focused on the specialty.

Internships are included in the training (minimum 8 weeks in M1, 5 to 6 months in M2).

SPECIALITY

The European Master's Degree in Theoretical Chemistry and Computational Modelling (TCCM) offers you the opportunity to acquire the knowledge necessary for theoretical simulations which are very important today in all branches of chemistry and molecular physics. Applications include the design of new drugs in the pharmaceutical industry, new materials and nanodevices in applied physics or the prediction of properties and reactivity of new chemical compounds needed in the chemical industry.

PRESENTATION OF THE YEAR OF MASTER 2 EM THEORITICAL CHEMISTRY AND COMPUTATIONAL MODELING

During the Master's programme we will teach you the fundamentals of quantum chemistry, which is at the heart of the most accurate techniques in theoretical chemistry, but we will also give you the skills to use and modify the most advanced software codes used to perform simulations of real systems. You will also learn to simulate complex systems by combining quantum mechanical techniques with classical molecular dynamics techniques. The courses take the form of intensive weeks organised alternately by the different universities of the TCCM consortium. Geographical mobility is compulsory, as students must complete 30ECTS of a semester in a country other than the one in which they are registered. This mobility can take place either during the first semester of M2 or, and this is the most frequent case, during the second semester when an internship in a research laboratory is carried out.

LIST OF RECOMMENDED COURSES:

M1 CHI TCCM EM

CONTACTS SECTION

CONTACT INFORMATION CONCERNING THE SPECIALTY

PERSON IN CHARGE OF TEACHING AFFAIRS OF MASTER 2 EM THEORITICAL CHEMISTRY AND COMPUTATIONAL MODELING

EVANGELISTI Stefano

Email: stefano@irsamc.ups-tlse.fr

SORTAIS Jean-Baptiste

Email: jean-baptiste.sortais@lcc-toulouse.fr

SUAUD Nicolas

Email: suaud@irsamc.ups-tlse.fr

Téléphone: 05 61 55 65 48

SECRETARY OF STUDENT AFFAIRS OF

BOURREL Céline

Email : celine.bourrel@univ-tlse3.fr Téléphone : 05.61.55.65.37

Université Paul Sabalier U2 rdc porte 26 118 route de Narbonne 31062 TOULOUSE cedex 9

CONTACT INFORMATION CONCERNING THE DISCIPLINE

PERSON IN CHARGE OF THE DISCIPLINE CHIMIE

SORTAIS Jean-Baptiste

Email: jean-baptiste.sortais@lcc-toulouse.fr

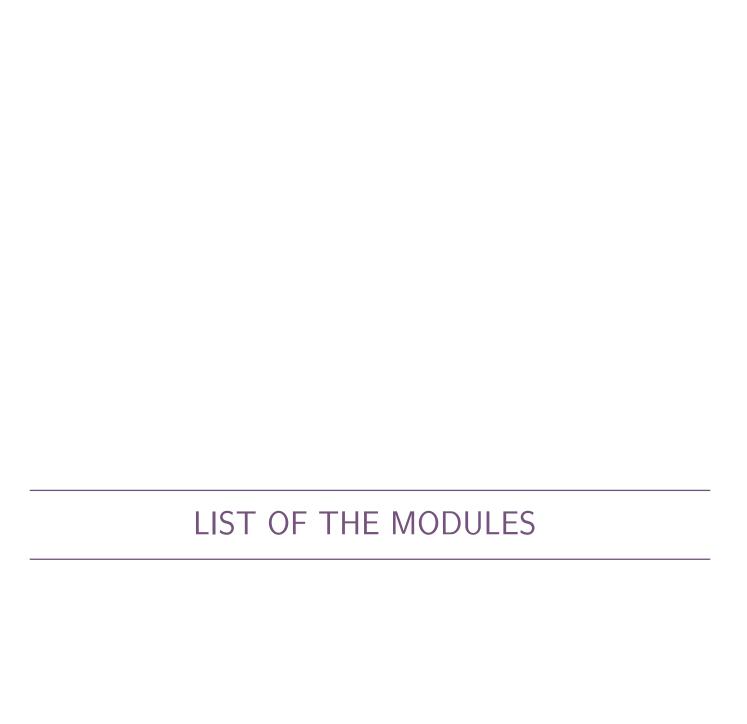
CONTACT INFORMATION FOR THE DEPARTMENT: FSI.CHIMIE

HEAD OF DEPARTMENT

JOLIBOIS Franck

Email: franck.jolibois@univ-tlse3.fr Téléphone: 0561559638

DEPARTMENT SECRETARY


TEDESCO Christine

Email : christine.tedesco@univ-tlse3.fr Téléphone : +33 561557800

TABLE SUMMARIZING THE MODULES THAT MAKE UP THE TRAINING PROGRAM

page	Code	Title of the module	semestre*	ECTS	Mandatory Optional	Cours	Cours-TD	TD	TP	Stage
		First semester								
13	KCHM9AAU	ADVANCED METHODS IN ELECTRONIC STRUCTURE, DYNAMICS AND MOLEC (AMESDM)	I	12	0	40		40		
		Choose 3 module among the following 8 module	les :							
14	KCHM9ABU	MULTISCALE, MACHINE LEARNING AND QSAR ME- THODS APPLIED TO BIO (MultiMLQSAR)	I	6	0		30		15	
15	KCHM9ACU	ADVANCED COMPUTATIONAL TECHNIQUE (ACT)	I	6	0		30		15	
16	KCHM9ADU	THEORETICAL METHODS FOR SIMULATION OF MATE- RIALS (TMSM)	I	6	0		30		15	
17	KCHM9AEU	COMPUTATIONAL CHEMISTRY PROGRAMMING PRO- JECT (CCPC)	I	6	0		30		15	
18	KCHM9AFU	FROM THEORY TO IMPLEMENTATION : TUTORIALS IN THEORETICAL CHEM (LTTC)	I	6	0		30		15	
19	KCHM9AGU	MODELLING ELECTRONIC STRUCTURE (MES)	I	6	0		30		15	
20	KCHM9AHU	MULTISCALE MODELLING OF COMPLEX MOLECULAR SYSTEMS (MMCMS)	I	6	0		30		15	
21	KCHM9AIU	SURFACE AND INTERFACE CHEMISTRY : EXPERIMENT AND MODELLIN (SICEM)	I	6	0		30		15	
	Second semester									
22	KCHMAAAU	STAGE (Stage)	Ш	30	0					6

^{*} AN :year long teaching, I : first semester, II : second semester

UE	VAE : M2 CHI TCCM EM	ECTS	
Sous UE	VAE Phase 1 - Avis de faisabilite : M2 CH	I TCCM EM	
K5CHMV1E	VAE : 1h	Teaching in anglais	Personal work 0 h

UE	VAE : M2 CHI TCCM EM	ECTS	
Sous UE	VAE Phase 2 - Accompagnement : M2 CF	II TCCM EM	
K5CHMV2E	VAE : 4h	Teaching in anglais	Personal work 0 h

UE	VAE : M2 CHI TCCM EM	ECTS	
Sous UE	VAE Phase 3 - Participation a un jury : M2 (CHI TCCM EN	Л
K5CHMV3E	VAE: 8h	Teaching in anglais	Personal work 0 h

UE	VAE : M2 CHI TCCM EM	ECTS	
Sous UE	VAE Phase 4 - Accomp suivant les prescriptions du ju	ury : M2 CHI	TCCM EM
K5CHMV4E	VAE : 6h	Teaching in anglais	Personal work 0 h

UE	COMPUTATIONAL (CMML)	MODELING	AND	ML	6 ECTS	
KCHM0FAU	Cours : 15h , TP : 25h				Teaching in anglais	Personal work 150 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

Email: suaud@irsamc.ups-tlse.fr

LEARNING GOALS

See https://www.emtccm.org/

SUMMARY OF THE CONTENT

See https://www.emtccm.org/

PREREQUISITES

M2 TCCM students must have validated a first year of TCCM Master of any of the 9 universities of the TCCM consortium

SPECIFICITIES

All courses are in English. They are provided alternatively by a University of the TCCM consortium. Their location change each year.

TARGETED SKILLS

See https://www.emtccm.org/

REFERENCES

See https://www.emtccm.org/

KEYWORDS

See https://www.emtccm.org/

UE	ADVANCED METHODS IN ELECTRONIC STRUCTURE, DYNAMICS AND MOLEC (AMESDM)		$1^{ m st}$ semester
KCHM9AAU	Cours : 40h , TD : 40h	Teaching in anglais	Personal work 220 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

Email: suaud@irsamc.ups-tlse.fr

LEARNING GOALS

See https://www.emtccm.org/

SUMMARY OF THE CONTENT

See https://www.emtccm.org/

PREREQUISITES

See https://www.emtccm.org/

SPECIFICITIES

See https://www.emtccm.org/

TARGETED SKILLS

See https://www.emtccm.org/

REFERENCES

See https://www.emtccm.org/

KEYWORDS

See https://www.emtccm.org/

UE	MULTISCALE, MACHINE LEARNING AND QSAR METHODS APPLIED TO BIO (MultiML-QSAR)	6 ECTS	$1^{ m st}$ semester
KCHM9ABU	Cours-TD : 30h , TP : 15h	Teaching in anglais	Personal work 105 h
URL	Seehttps://www.emtccm.org/		

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

Email: suaud@irsamc.ups-tlse.fr

LEARNING GOALS

See https://www.emtccm.org/

SUMMARY OF THE CONTENT

See https://www.emtccm.org/

PREREQUISITES

See https://www.emtccm.org/

SPECIFICITIES

See https://www.emtccm.org/

TARGETED SKILLS

See https://www.emtccm.org/

REFERENCES

See https://www.emtccm.org/

KEYWORDS

See https://www.emtccm.org/

UE	ADVANCED COMPUTATIONAL TECHNIQUE (ACT)	6 ECTS	1 st semester
KCHM9ACU	Cours-TD: 30h, TP: 15h	Teaching in anglais	Personal work 105 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

 ${\sf Email: suaud@irsamc.ups-tlse.fr}$

LEARNING GOALS

A compléter

SUMMARY OF THE CONTENT

A compléter

PREREQUISITES

A compléter

SPECIFICITIES

A compléter

TARGETED SKILLS

A compléter

REFERENCES

A compléter

KEYWORDS

UE	THEORETICAL METHODS FOR SIMULATION OF MATERIALS (TMSM)	6 ECTS	1 st semester
KCHM9ADU	Cours-TD: 30h, TP: 15h	Teaching in anglais	Personal work 105 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

Email: suaud@irsamc.ups-tlse.fr

LEARNING GOALS

A compléter

SUMMARY OF THE CONTENT

A compléter

PREREQUISITES

A compléter

SPECIFICITIES

A compléter

TARGETED SKILLS

A compléter

REFERENCES

A compléter

KEYWORDS

UE	COMPUTATIONAL CHEMISTRY PROGRAM- MING PROJECT (CCPC)	6 ECTS	1 st semester
KCHM9AEU	Cours-TD : 30h , TP : 15h	Teaching in anglais	Personal work 105 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

 ${\sf Email: suaud@irsamc.ups-tlse.fr}$

LEARNING GOALS

A compléter

SUMMARY OF THE CONTENT

A compléter

PREREQUISITES

A compléter

SPECIFICITIES

A compléter

TARGETED SKILLS

A compléter

REFERENCES

A compléter

KEYWORDS

UE	UE FROM THEORY TO IMPLEMENTATION : TU- TORIALS IN THEORETICAL CHEM (LTTC)		1 st semester
KCHM9AFU	Cours-TD : 30h , TP : 15h	Teaching in anglais	Personal work 105 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

 ${\sf Email: suaud@irsamc.ups-tlse.fr}$

LEARNING GOALS

A compléter

SUMMARY OF THE CONTENT

A compléter

PREREQUISITES

A compléter

SPECIFICITIES

A compléter

TARGETED SKILLS

A compléter

REFERENCES

A compléter

KEYWORDS

UE	MODELLING (MES)	ELECTRONIC	STRUCTURE	6 ECTS	1 st semester
KCHM9AGU	Cours-TD: 30h,	TP: 15h		Teaching in anglais	Personal work 105 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

 ${\sf Email: suaud@irsamc.ups-tlse.fr}$

LEARNING GOALS

A compléter

SUMMARY OF THE CONTENT

A compléter

PREREQUISITES

A compléter

SPECIFICITIES

A compléter

TARGETED SKILLS

A compléter

REFERENCES

A compléter

KEYWORDS

UE	MULTISCALE MODELLING OF COMPLEX MO- LECULAR SYSTEMS (MMCMS)	6 ECTS	1 st semester
KCHM9AHU	Cours-TD: 30h, TP: 15h	Teaching in anglais	Personal work 105 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

Email: suaud@irsamc.ups-tlse.fr

LEARNING GOALS

A compléter

SUMMARY OF THE CONTENT

A compléter

PREREQUISITES

A compléter

SPECIFICITIES

A compléter

TARGETED SKILLS

A compléter

REFERENCES

A compléter

KEYWORDS

UE	UE SURFACE AND INTERFACE CHEMISTRY : EXPERIMENT AND MODELLIN (SICEM)		1 st semester
KCHM9AIU	Cours-TD: 30h, TP: 15h	Teaching in anglais	Personal work 105 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

 ${\sf Email: suaud@irsamc.ups-tlse.fr}$

LEARNING GOALS

A compléter

SUMMARY OF THE CONTENT

A compléter

PREREQUISITES

A compléter

SPECIFICITIES

A compléter

TARGETED SKILLS

A compléter

REFERENCES

A compléter

KEYWORDS

UE	STAGE (Stage)	30 ECTS	2 nd semester
KCHMAAAU	Stage : 6 mois	Teaching in anglais	Personal work 750 h

TEACHER IN CHARGE OF THE MODULE

SUAUD Nicolas

Email: suaud@irsamc.ups-tlse.fr

LEARNING GOALS

The internship is dedicated to apply knowledges.

SUMMARY OF THE CONTENT

Minimum 4 months.

PREREQUISITES

TCCM M1 and M2 courses

SPECIFICITIES

The choice of the lab or firm must fulfill the mobility rules

TARGETED SKILLS

Be able to adapt to working conditions

GENERAL TERMS

DEPARTMENT

The departments are teaching structures within components (or faculties). They group together teachers lecturing in one or more disciplines.

MODULE

A semester is structured into modules that may be mandatory, elective (when there is a choice) or optional (extra). A module corresponds to a coherent teaching unit whose sucessful completion leads to the award of ECTS credits.

ECTS: EUROPEAN CREDITS TRANSFER SYSTEM

The ECTS is a common unit of measure of undergraduate and postgraduate university courses within Europe, created in 1989. Each validated module is thus assigned a certain number of eCTS (30 per teaching semester). The number of ECTS depends on the total workload (lectures, tutorials, practicals, etc.) including individual work. The ECTS system aims to facilitate student mobility as well as the recognition of degrees throughout Europe.

TERMS ASSOCIATED WITH DEGREES

Degrees have associated domains, disciplines and specialities.

DOMAIN

The domain corresponds to a set of degrees from the same scientific or professional field. Most of our degrees correspond to the domain Science, Technology and Health.

DISCIPLINE

The discipline corresponds to a branch of knowledge. Most of the time a discipline consists of several specialities.

SPECIALITY

The speciality constitutes a particular thematic orientation of a discipline chosen by a student and organised as a specific trajectory with specialised modules.

TERMS ASSOCIATED WITH TEACHING

LECTURES

Lectures given to a large group of students (for instance all students of the same year group) in lecture theatres. Apart from the presence of a large number of students, lectures are characterized by the fact they are given by a teacher who defines the structure and the teaching method. Although its content is the result of a collaboration between the teacher and the rest of the educational team, each lecture reflects the view of the teacher giving it.

TD: TUTORIALS

Tutorials are work sessions in smaller groups (from 25 to 40 students depending on the department) led by a teacher. They illustrate the lectures and allow students to explore the topics deeper.

TP: PRACTICALS

Teaching methods allowing the students to acquire hands-on experience concerning the knowledge learned during lectures and tutorials, achieved through experiments. Practical classes are composed of 16 to 20 students. Some practicals may be partially supervised or unsupervised. On the other hand, certain practicals, for safety reasons, need to be closely supervised (up to one teacher for four students).

PROJECT

A project involves putting into practice in an autonomous or semi-autonomous way knowledge acquired by the student at the university. It allows the verification of the acquisition of competences.

FIELD CLASS

Field classes are a supervised teaching method consisting of putting into practice knowledge acquired outside of the university.

INTERNSHIPS

Internships are opportunities enabling students to enrich their education with hands-on experience and to apply lessons learned in the classroom to professional settings, either in industry or in research laboratories. Internships are strongly regulated and the law requires, in particular, a formal internship convention established between the student, the hosting structure and the university.

